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The quiet revolution

e Numerical weather prediction
(NWP) has been steadily
progressing over the past decades

e Great scientific achievement
o Complex simulation problem being
solved routinely in operational
forecasting centers across the world
e Strong socio-economical value
o Climate hazards mitigation, Logistics,
Property loss prevention,

doi:10.1038/nature14956
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The quiet revolution of numerical

weather prediction

Peter Bauer', Alan Thorpe' & Gilbert Brunet”

Advances in numerical weather p i P a quiet because they have resulted from a steady
of dge and over many years that, with only a few exceptions,
have not been associated with the aura of fund 1 physics ghs. Nonetheless, the impact of numerical

weather predictlon is among the greatest of any area of physical science. As a computational problem, global weather
o ithe 5

of the human brain and of the evolution of the early Universe, and it is

performed every day at major operational centres across the world.

posed that the laws of physics could be used to forecast the
weather; they recognized that predicting the state of the a[mo'
sphere could be treated as an initial value problem of i

S t the turn of the twentieth century, Abbe' and Bjerknes® pro-

use of observational information from satellite data providing global
coverage.

More visible to society, however, are extreme events. The unusual
path and intensification of hurricane Sandy in October 2012 was pre-

physics, wherein future weather is determined by integrating the gov-
erning partial differential equations, starting from the observed current
weather. This proposition, even with the most optimi:

dicted 8 days ahead, the 2010 Russian heat-wave and the 2013 US cold
spell were forecast with 1-2 weeks lead time, and tropical sea surface
variability following the El Nifio/Southern Oscillation phe-

of Newtonian determinism, is all the more audacious given tha( at that
time, there were few routine observations of the state of the

nomenon can be predicted 3-4 months ahead. Weather and climate

no computers, and little understanding of whether the weather possesses
any significant degree of predictability. But today, more than 100 years
later, this paradigm translates into solving daily a system of nonlinear
differential equations at about halfa billion points per time step between
the initial time and weeks to months ahead, and accounting for dynamic,
thermodynamic, radiative and chemical processes working on scales
from hundreds of metres to thousands of kilometres and from seconds
to weeks.

A touchstone of scientific knowledge and understanding is the ability
to predict accurately the outcome of an experiment. In meteorology, this
translates into the accuracy of the weather forecast. In addition, today’s
numerical weather predictions also enable the forecaster to assess quan-
titatively the degree of confidence users should have in any particular
forecast. This is a story of profound and fundamental scientific success
built upon the application of the classical laws of physics. Clearly the
success has required technological acumen as well as scientific advances
and vision.

Accurate forecasts save lives, support emergency management and
mitigation of impacts and prevent economic losses from high-impact
weather, and they create substantial financial revenue—for example, i in
energy, agricul transport and ional sectors. Their sut i
benefits far outweigh the costs of investing in the essential scientific
research, super-computing facilities and satellite and other obser-
vational programmes that are needed to produce such forecasts’.

These scientific and technological developments have led to increas-
ing weather forecast skill over the past 40 years. Importantly, this skill
can be objectively and quantitatively assessed, as every day we compare
the forecast with what actually occurs. For example, forecast skill in the
range from 3 to 10 days ahead has been increasing by about one day per
decade: today’s 6-day forecast is as accurate as the 5-day forecast ten
years ago, as shown in Fig. 1. Predictive skill in the Northern and
Southern hemispheres is almost equal todav. thanks to the effective

skill are inti linked, because accurate climate predic-

tion needs a good representation of weather phenomena and their stat-
istics, as the underlying physical laws apply to all prediction time ranges.
This Review explains the fundamental scientific basis of numerical
weather prediction (NWP) before highlighting three areas from which
the largest benefit in predictive skill has been obtained in the past—
physical process representation, ensemble forecasting and model initi-
alization. These are also the areas that present the most challenging
science questions in the next decade, but the vision of running
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Figure 1| A measure of forecast skill at three-, five-, seven- and ten-day
ranges, computed over the extra-tropical northern and southern
hemispheres. Forecast skill is the correlation between the forecasts and the
verifying analysis of the height of the 500-hPa level, expressed as the anomaly
with respect to the climatological height. Values greater than 60% indicate
useful forecasts, while those greater than 80% represent a high degree of
accuracy. The convergence of the curves for Northern Hemisphere (NH) and
Southern Hemisphere (SH) after 1999 indicates the breakthrough in exploiting
satellite data through the use of variational data'®®.
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The problem ahead

Some/most of the progress had
been related to Moore's law

Growth in CPU computing power
slowed down

doi:10.1038/nature14956
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What happened

e Startingin 2023, three different research teams used deep neura
networks to perform medium-range weather forecasts

e Their skill became ~equivalent to the leading NWP models

Forecasting Global Weather
with Graph Neural Networks

Ryan Keisler
rkeislerograil.con
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Pangu-Weather: A 3D High-Resolution System
for Fast and Accurate Global Weather Forecast

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian™, Fellow; IEEE.
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1 INTRODUCTION

Westher foreas s one of the st important scerarios
of senic computing I offes he bilty of predicing
future weather changes, especially the occurrence of ex-
e westh event g Boods, drought, hurricancss
efc), which has large values to the society (e.g., daily activ-
ity, agriculture, energy production, transportation, industry,
etc). In the past decade, with the bloom of high-performance

d

development in h field of numerical weather
dichon (WD) ] Convenenal NWF methos mosty
Tollow a simulation-based paradigm which formulates the
physical rules of atmospheric sate into partal differen-
Hable equations (PDES) and solves them using nummerk

simlatons B, @, Bl. Due 1o the high comple

solving PDEs, these NWP methods are often
s spait eclation of .35 0.5 a s st
rocedure for 10-day forecast can take hours of compu-

tation using hundreds of nodes in a supercomputer [3

Thiargly rdocesthe tmekivss i iy weather forecest
ind the number of ensemble members that c

erid; themimber of ensemble imembees. that can.be e

learning]. The methodology isto use adeep neuralnetwork
o capture the relationship between the input (observed
data) and output (target dats o be prediced). On spe-
alized computatonal device e, GPUs), Al-based meth
ol v st il i 1 e e
model comple n resolution, and predicton
accuracy [, (10), III! llll Im (1), [13) A~ a recent
xample, FourCot [ e te syt rcution
fo 035" x 025, comparabl o the ECMWF Integrated
Forecas Systme 1%yt i ke oy 7 conds o fou
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5 However, the forscast ccuracy of FourCastNet i
Silbclow sasacion, 5. the KMSE o - oy Z0 ot
usinga single model and & 100-member ensemble are 431.5
and 4525, respectivly which are much worse than 333.7 e

conjectured that ‘a number of fundamental breakthroughs
are needed” before Al-based methods can beat NWP.

The breakthrough comes much earlier than they thought
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How it works

Data: ERAS reanalysis dataset

e Reanalysis: incorporating
observations into a physically
consistent system to create
our best guess of the true
state of the system

doi:10.1002/qj.3803

https://www.ecmwf.int/en/about/media-centre/focus/2023/fact-sheet-reanalysis

Global Observing System

ECMWF model



https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
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https://www.ecmwf.int/en/about/media-centre/focus/2023/fact-sheet-reanalysis

How it works

e Model: Deep Neural Networks
o Various architectural strategies
o Fourier Transforms
o Graph Neural Networks
o Collection of models for resolving different time leaps

e Training loss: deterministic



a) Input weather state
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Computational cost

Model

Pangu-Weather
GraphCast

NWP (ECMWF HRES)

*Higher resolution

Training

16 days on 192 V100 GPUs

21 days on 32 Cloud TPU
V4 devices (~128 GPUs)

Inference

24 hours forecast
1xV100
1.4 seconds on

10 days forecast
1 Cloud TPU V4
< 60 seconds

10 days forecast
1/3/6 hours
11 664 cores HPC cluster



A revolution?

Deep weather forecasting models represent a >10 000x decrease in
compute cost for a critical piece simulation

A lot of scientific fields and industries depend on the output of weather
forecasting models: hydrology, agriculture, risk management,
transportation, etc.

Some domains may need to completely revise their modeling stacks to fully
integrate the benefits



Let's speculate

e Foundational models

o Fully-coupled applicative models that perform backpropagation all
the way to the weather forecasting models

e From observation to application

o Model can now integrate more observations with more flexibility
because they are fully differentiable

e Edge computing
o Sensory devices can use their own observations to make
adapted forecasts themselves, on the edge
Extremely short-term forecasts
o Applications for this?



Rate of progress

e The current rate of progress of artificial intelligence is high
e Deep learning provides a lot of possibilities in integrating various

sources of information because it is fully differentiable
o Capable of multi-modality

e Researchis now a lot easier. The rate of iteration on modeling
hypothesis has increased dramatically.



What didn't change

e The existing deep weather forecasting models are based on reanalysis

products, which themselves contain an NWP model
o Notably, they need a physical model to decide how to incorporate observations

e Great wealth of knowledge in forecast evaluation, ensemble
forecasting, high-performance computing, physics... An operational
weather forecasting model is much more than its time stepping

e Deep forecasting networks don't do precipitation -- the distribution is

problematic
o GraphCast computes it but does not report



What didn't change

e Old conversations are

resurfacing
o Spectral vs Grid-based
approaches

e The deep forecasts are
blurry, but do we want them
sharp?

o Sharpness is important for
interpretation using physics
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Upcoming challenges

Going probabilistic

Integrating more fields, including the difficult ones

Transition towards climate models

Cascades of models: train area specific, high-resolution models,
where data is available

e Begin to scratch the surface of the possible applications
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