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Flow matching performs distribution transport. It
displaces a well-known distribution (often a
standard normal distribution) towards an unknown
distribution for which we only have samples.

\Postprocessed in situ
weather forecast

The transport is performed by vector field
estimated by a neural network. The vector field is
integrated numerically at inference time to
generate new predictions. The NN is trained using a
flow matching loss.

Flow matching is a great tool for spatially
coherent in-situ weather forecasting

Flow matching is an alternative representation of
the familiar denoising diffusion methods.

Experiments and Results Conclusion and Perspectives

Our methodology, based on flow matching
and a spatial attention transformer, improved
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