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Problem statement
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Numerical Weather Predictions (NWP) are systematically biased w.r.t.
observations due to local effects and unresolved phenomena
We want to predict in situ surface temperature given a deterministic

global weather forecast

Credits: sciencephoto.com




To what extent can we recover forecast
uncertainty without ensemble NWP?



State of the art
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Multi-layer perceptrons (MLPs) have proven very flexible for many
variables and time horizons

They are flexible in terms of the uncertainty representation
[Bremnes2020] [Schulz2022]

To what extent can they recover a distributional forecast from a

deterministic NWP?
Should we train them separately for all lead times or simultaneously?
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Postprocessing model architecture



Dataset (NWP Model)

e NWP-Dependent predictors

e Outputs from the Global Deterministic o Mix of temperature, wind, geopotential height,
P humidit
PredICTlon SysTem (GDPS) o Su:oce?llooo, 850 and 500 hPa
e Every 24h up to 10 days o 18in total
e 0.2->0.15° e NWP-Independent predictors

o Forecast day, Forecast time of day
o Latitude, longitude, elevation
o Lead time

2019-01-01 2019-07-03 2020-01-21 2020-12-01 2021-12-01
GDPS 6.1.0 GDPS 7.0.0 GDPS 7.1.0 GDPS 8.0.0

(contd) >

Training+Validation Test




Dataset (Observations)

p

e We target surface temperature
observations from the METAR
network

e Observations harvested from the
Iowa State University
Environmental Mesonet

e 1066 stations in Canada and USA
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Results
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CRPSS (vs. Naive)
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Postprocessing performance metrics
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CRPSS (vs. partition)

Conditioning
strategy

—— Partition
—— Predictor
—— Embedding

—— Pred.+Emb.

Effect of lead time conditioning strategy
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Conclusion

/

We successfully produced calibrated distributional forecasts given a
deterministic forecasts

Journal paper under review

Choice of uncertainty representation has little impact on marginal
performance but affects the calibration (rank histograms)

It helps to train all lead times in a single model
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Outlook
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Quantify the impact of supplementary ensemble members on the
output distribution
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P.S.

/

I have a few questions about the EUPPBench dataset if anyone is
available!
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https://www.github.com/davidlandry93/pp2023

Thank you!
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NWP Linear Neural Network
Model Raw Naive MOS EMOS LBQ LQR DNN DRN BQN QRN
CRPS 2.925 1.921 2.467 1.700 1.852 1.897 2315 1.633 1.622 1.635
CRPSS -0.523 0.000 -0.284 0.115 0.036 0.012 -0.205 0.150 0.156 0.149
RMSE 4070 3.783 3.385 3334 3566 3.597 3.256 3227 3.216 3.227
QLo 05 - 0.392 - 0.346 0.427 0.462 - 0.335 0.320 0.323
QLo.95 - 0.375 - 0.327 0.402 0.436 - 0.301 0.291 0.295

Metrics table
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Lead time conditioning strategy

Model Partition Predictor Embedding Pred.+Emb.

DRN 1.655 1.637 1.638 1.634
BON 1.641 1.627 1.626 1.622
QRN 1.644 1.638 1.634 1.635

CRPS for lead time conditioning strategies
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Skill gain spatial distribution
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